The Silicon Controlled Rectifier (‘SCR’) is widely used for ESD protection due to its superior performance and clamping capabilities. However, many believe that SCR-based ESD protection is prone to latch-up, competitive triggering, long development cycles and slow trigger speed. This paper provides an overview of the problems and corresponding design solutions available.
Sarnoff Europe ESD design solutions

- On-chip ESD solutions
 - Enable customers to integrate product proven ESD solutions in their ICs
 - Faster time to market
 - Lower R&D/IP risk and expense

- Track record in 8 CMOS generations, BiCMOS and BCD
 - Since 2007: 32 ICs released in 65nm CMOS
 - July 2008: 40nm ESD solutions validated in silicon!
 - IDM, Fabless customers and foundry partners
 - TSMC DCA partner, UMC IP Alliance partner
 - Toshiba, SONY, Infineon, Altera, PMC, Gennum, Actel, THine, AMIS, RedMere, ON...
Purpose of this presentation

- Highlight **ESD threats** in advanced *SoC’s in 45 and beyond*
 - IO and core protection is not enough
 - Case studies: Core failures during ESD testing found

- **Provide clarification**
 - Failures at interfaces between functional blocks
 - Overview of dangerous situations

- **Propose solutions**
 - Silicon and product proven approach

Outline

- **Introduction**

- ESD issues in System on Chip (SoC)

- **Conclusions**
What is Electro Static Discharge (ESD)?

- **What is Electrostatic Discharge (‘ESD’)?**
 - The sudden discharge of a charged body
 - Short time (<1us)
 - Short rise time (<10ns)
 - High current levels (1-10A)

- **ESD damages in integrated circuits**
 - Industry quotes about ESD failures:
 - “Responsible for 20-30% of IC failures”
 - “25.8% of the products rejected”
 - “Estimated 8 to 33% of all product losses”

How to deal with ESD? – ESD protection approach

- **Solution: On-chip ESD protection clamps**
 - Included in IO library
 - ESD tolerant driver design (foundry guidelines)
 - Does this solve all stress cases?
Outline

- Introduction

- ESD issues in System on Chip (SoC)
 - SoC complexity
 - ESD in advanced CMOS
 - Investigation of most dangerous cases

- Conclusions

System on Chip complexity – background

- System on Chip (SoC)
 - Advanced technology nodes: 65nm, 45nm
 - Multi million $ investment
 - Mask costs
 - Innovation
 - Design
 - Tools
 - High revenue based products to justify the substantial cost of investment
 - Complex architecture
 - Multiple voltage domains
 - Multiple IP blocks from various vendors

- ESD difficulty increasing...
 - Due to advanced technology and product complexity
ESD Design Margin evaporates for advanced CMOS

- Decreasing solution space
 - Normal operation (VDD)
 - Slight decrease
 - Maximum voltage decreases rapidly
 - Transient breakdown of gate oxides
 - Burn-out of output drivers
 - Core failure voltage

Sarnoff Europe © 2008
Proprietary & Confidential
ESD Design Margin evaporates for advanced CMOS

- Decreasing solution space
 - Normal operation (VDD)
 - Slight decrease
 - Maximum voltage decreases rapidly
 - Transient breakdown of gate oxides
 - Burn-out of output drivers
 - Core failure voltage
 - Difference = ESD design window
 - Rapid reduction of design margins

Outline

- Introduction
- ESD issues in System on Chip (SoC)
 - SoC complexity
 - ESD in advanced CMOS
 - Investigation of most dangerous cases
- Conclusions
How about your ASIC circuits?

Dangerous situations (1/4)

- **Cause:** Include on-chip decoupling capacitors
 - Stabilize Vdd supply potential
 - Reduce board level components: BOM
 - Designers use GOX1 gate capacitance: highest Cap/area

- **Problem:**
 - LV Core breakdown determined by sensitive thin gate oxide
 - Reduced ESD design margin

- **Solution:**
 - Low voltage triggered power clamp

How about your ASIC circuits?

Dangerous situations (2/4)

- **Cause:**
 - Analog tricks to improve circuit speed
 - Include core transistors in 3.3V domain
 - Designers use GOX1 transistor for speed reasons
 - Designers do not use ESD foundry rules

- **Problem:**
 - HV Core breakdown determined by sensitive thin gate transistor
 - Reduced ESD design margin

- **Solution:**
 - Low voltage triggered power clamp for High Voltage domain
How about your ASIC circuits?

- Dangerous situations (3/4)
 - Cause:
 - Cascode configurations
 - Increase signal voltage tolerance (5V tolerant)
 - Designers do not use ESD foundry rules
 - Problem:
 - Unballasted cascode design ESD sensitive
 - Reduced ESD design margin
 - Solution:
 - Improved cascode layout
 - Local (IO) protection approach

How about your ASIC circuits?

- Issues 1-3
 - Reduced ESD design margins
 - Example solution
 - 40nm CMOS – 0.9V domain
 - 3.6kV HBM
 - 245V MM
 - < 100pA leakage

Sarnoff Europe © 2008
Proprietary & Confidential
SoC’s add another level of complexity

- SoC’s main ESD problem?
 - IP block 1: Within specs
 - Fully qualified for ESD protection
 - Silicon proven, product proven
 - IP block 2: Above specs
 - Fully qualified for ESD protection
 - Silicon proven, product proven

IP#1 alone
>2kV HBM, >500V CDM

IP#2 alone
>4kV HBM, >1000V CDM
SoC’s add another level of complexity

- SoC’s main ESD problem?
 - IP block 1: Within specs
 - Fully qualified for ESD protection
 - Silicon proven, product proven
 - IP block 2: Above specs
 - Fully qualified for ESD protection
 - Silicon proven, product proven
 - Wired together in SoC: Below spec
 - Functionality: OK
 - ESD qualification: below spec!
 - Which IP provider is responsible?

How about your ASIC circuits?

- Dangerous situations (4/4)
 - Cause:
 - Multiple functional core blocks – separately biased
 - Multiple voltage domains (Digital, Analog, IO, ...)
 - Multiple IP blocks from various vendors
 - Problem:
 - Unprotected internal / on-chip communication lines
 - Solution:
 - Ground to ground
 - Improved cascode layout
 - Local (IO) protection approach
Industry reports on this issue since 90nm node

- Worley (Conexant), 2004
 - Oxide failure at receiving circuit
 - Signal line between 2 domains
 - Different solution approaches
 - Remote blocks
 - Adjacent blocks

- Hayashi (Oki), 2004
 - ESD failure at signal line between two supply units
 - Reason: slow power/core protection (SB NMOS)

- Brennan (IBM), 2004

Outline

- Introduction

- ESD issues in System on Chip (SoC)

- Conclusions
Conclusions

- Growing difficulty for ESD protection
 - Advanced CMOS
 - Complex System-on-Chip designs

- Public solutions
 - Exploding silicon cost, increased risk (Industry group)
 - IO based protection not sufficient
 - Core interface circuits need specific care

- Solutions available
 - Treat on-chip interfaces as external interfaces for ESD
 - Include protection clamps at sensitive receiver

Simple solution to core failures?

- L. Avery (Sarnoff patent), 1996 – **Rubber band** technique
 - Multi domain core protection
 - Isolation resistance to limit the current
 - Local gate protection for most sensitive gates
Contact us

TakeCharge Technology
Benjamin Van Camp bvancamp@sarnoffeurope.com
Bart Keppens bkeppens@sarnoffeurope.com

TakeCharge Business
Katty Van Mele kvanmele@sarnoffeurope.com
Koen Verhaege kverhaege@sarnoffeurope.com

Sarnoff Europe
Brugsebaan 188A, B-8470 Gistel, BELGIUM
(tel) +32-59-275-915, (fax) +32-59-275-916
www.sarnoffeurope.com
About Sofics

Sofics (www.sofics.com) is the world leader in on-chip ESD protection. Its patented technology is proven in more than a thousand IC designs across all major foundries and process nodes. IC companies of all sizes rely on Sofics for off-the-shelf or custom-crafted solutions to protect overvoltage I/Os, other non-standard I/Os, and high-voltage ICs, including those that require system-level protection on the chip. Sofics technology produces smaller I/Os than any generic ESD configuration. It also permits twice the IC performance in high-frequency and high-speed applications. Sofics ESD solutions and service begin where the foundry design manual ends.

Our service and support

Our business models include

- Single-use, multi-use or royalty bearing license for ESD clamps
- Services to customize ESD protection
 - Enable unique requirements for Latch-up, ESD, EOS
 - Layout, metallization and aspect ratio customization
 - Area, capacitance, leakage optimization
- Transfer of individual clamps to another target technology
- Develop custom ESD clamps for foundry or proprietary process
- Debugging and correcting an existing IC or IO
- ESD testing and analysis

Notes

As is the case with many published ESD design solutions, the techniques and protection solutions described in this data sheet are protected by patents and patents pending and cannot be copied freely. PowerQubic, TakeCharge, and Sofics are trademarks of Sofics BVBA.

Version

May 2011