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Abstract – A novel Diode-Triggered SCR (DTSCR) ESD protection element is introduced for low-voltage application (signal, 
supply voltage ≤ 1.8V) and extremely narrow ESD design margins. Trigger voltage engineering in conjunction with fast and 
efficient SCR voltage clamping is applied for the protection of ultra-sensitive circuit nodes, such as SiGe HBT bases (e.g. 
fTmax=45GHz in BiCMOS-0.35u LNA input) and thin gate-oxides (e.g. tox=1.7nm in CMOS-0.09u input). SCR integration is 
possible based on CMOS devices or can alternatively be formed by high-speed SiGe HBT’s.  
  

I. INTRODUCTION 
Due to their excellent clamping capabilities (low holding 
voltage and low dynamic on-resistance), SCR’s represent ideal 
ESD protection elements to operate within very narrow ESD 
design window applications, cf. Figure 1, where (GGNMOS) 
NPN bipolar-based protection is not feasible anymore. 
However, a suitable trigger element needs to be incorporated to 
latch the SCR sufficiently fast during ESD events and below 
the critical voltage limits of IC damage.  
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Figure 1 Narrow ESD design window IC applications. Top: SiGe HBT base 
protection in BiCMOS-0.35u: GGNMOS snapback trigger Vt1 and holding 
voltages Vhold are far above or too close to the damage level of the sensitive 
base-emitter junctions. Bottom: Ultra-Thin GOX input protection in CMOS-
0.09u: GGNMOS trigger Vt1 and holding voltage Vhold are above / too close 
to the transient breakdown voltage of the ultra-thin gate oxide (tox=1.7nm).  

This paper focuses on various implementations of a novel 
Diode Triggered SCR (DTSCR), which can be implemented 
based on CMOS or SiGe HBTs, respectively.  In addition, two 
narrow design window applications will be discussed, which 
represent two common key issues for ESD protection design in 
advanced technologies: 1. SiGe HBT RF-ESD protection in 
BiCMOS, cf. Figure 1 (top). 2. Ultra-thin GOX protection in 
CMOS-0.09u, cf. Figure 1 (bottom).  

II. DTSCR PROTECTION DESIGN 

II.1. SCR Trigger Voltage Engineering  
The DTSCR uses a trigger diode chain to latch the SCR during 
ESD stress conditions, when the diode string injects enough 
current into the SCR gates (“trigger taps”) G1 or/and G2.  
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Figure 2 G1-triggered DTSCR (a): forward bias of SCR  
G1-Cathode junction. In CMOS-SCR an intrinsic connection to the substrate 
(Rsub) is present. G2-triggered DTSCR (b/c): forward bias of G2-Anode 
junction. Vhold diode for LU immunity allows removing one diode (c). 

Triggering can either be accomplished by forward biasing the 
inherent SCR G1-Cathode junction, cf. Figure 2 (a), or 
alternatively the G2-Anode diode, cf. Figure 2 (b), or both 
simultaneously. The number of trigger diodes (n) must be 
chosen sufficiently high so that the chain does neither leak nor 
trigger the SCR during normal circuit operation. On the other 
hand, the SCR ESD trigger voltage is also defined by n. 
Obviously there is an important design trade-off between 
leakage during normal operation (“maximize n”) and ESD 

mailto:mmergens@sarnoffeurope.com


 

 

trigger voltage (“minimize n”). A reasonable design 
compromise can be achieved for low-voltage applications, 
where the supply or signal voltage does not exceed 1.8V. 
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Figure 3 DTSCR Vt1 engineering: TLP-IV characteristic of DTSCR (CMOS-
SCR) for three G1 trigger diode schemes: Vt1 ≈ (n+1)⋅0.8V (n trigger diodes + 
intrinsic SCR G1/Cdiode). 

For CMOS-based SCRs, G2-triggered devices bear an 
important advantage: the SCR G2 (Nwell)-Anode diode can be 
exploited as a trigger diode within the trigger chain due to the 
isolation of the Nwell from the P-substrate. In contrast, in 
G1(Pwell)-triggered elements the diode chain sees an intrinsic 
Pwell-substrate connection with a leakage path to ground, cf.  
Rsub in Figure 2 (a). As such, G2-triggering allows for the 
same diode-chain leakage during normal operation while using 
one trigger diode less, which is substituted by the inherent 
P+/Nwell (A/G2) SCR diode. Consequently, G2-triggered 
SCRs can be activated at an approximately 0.8V lower trigger 
voltage.  
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Figure 4 DTSCR latch-up engineering: TLP-IV characteristic of a G2-
triggered DTSCR (CMOS-SCR) for 1.8V application with 6 trigger diodes / no 
holding diode compared to 5 trigger diodes / 1 holding diode. Result: 
approximately 1V difference in Vh, approximately same Vt1, but higher It2 
with series diode due to parasitic darlington current into the substrate. 

Figure 3 illustrates the Vt1 engineering technique by showing 
TLP-IV characteristics of various DTSCRs with different 
diode-chains. In this example, the SCR design is based on 
CMOS layers only as will be explained in the next paragraph. 
Alternatively, the SCR can be realized solely using SiGe 

bipolar device options. The implementation of both 
configurations is discussed in the next two chapters. 
For higher VDD (e.g. if the DTSCR is used as a 1.8V supply 
clamp), a series diode is needed to increase the holding voltage 
Vhold above VDD to ensure latch-up immunity during normal 
operation [1], cf. Figure 2 (c). This holding diode can also 
become part of the trigger chain in a G2-triggered scheme 
replacing one trigger diode.  
Figure 4 shows the IV characteristics of two G2 triggered SCR 
demonstrating a holding voltage shift by approximately 1V to 
latch above VDD(=1.8V) using a series diode (P+/Nwell) to 
achieve latch-up immunity. The substitution of a trigger diode 
by a holding diode, does not alter the trigger voltage. 
Moreover, an increased maximum stress current can be 
observed when using a holding diode. This is due to the 
parasitic Darlington formed by the vertical PNPs in the device 
forming an additional ESD current path to GND. 
An important option with a diode trigger chain, apart from 
triggering the SCR, is that the diodes can serve as an ESD 
backup path for slower SCRs by clipping possible transient 
trigger voltage overshoots during very fast ESD transients, 
such as CDM (Charged Device Model). Careful design of the 
trigger diodes and trigger current injection point (G1 or G2) is 
required to form a sufficiently strong initial ESD current path 
through the diodes until efficient SCR clamping sets in. 
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Figure 5 Cross-section / layout of a CMOS based SCR. The local G1/G2 
trigger taps can be inserted between the interrupted cathode / anode diffusion, 
respectively [1]. In the DTSCR, a diode chain is applied to bias the wells 
through the gates G1/G2. 

II.2. SCR integration in CMOS  
Conventional CMOS design integrates SCRs purely based on 
CMOS layers [1], [2]. A schematic example layout and a cross-
section of the SCR kernel including gate / trigger tap 
implementation are depicted in Figure 5. 

II.3. SCR integration in SiGe HBT  
A schematic layout and cross-section of a SiGe HBT based 
SCR are shown in Figure 6. Due to the vertical current flow 
from the SiGe HBT emitter to collector, the SCR will benefit 
from the high currents that can flow in a vertical bipolar 



 

 

structure in contrast to lateral bipolar conduction in a lateral 
SCR. As demonstrated in Figure 7, the ESD performance in 
terms of maximum current It2 and HBM level drastically 
increases implementing more contact rows in anode and 
cathode, respectively, due to the reinforced vertical junction 
area.  
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Figure 6 Cross-section and layout of SiGe-HBT based SCR (not shown: 
external diode-chain trigger scheme that can be integrated through G1, or G2, 
or G1 and G2). The symmetrical SCR device is formed by a vertical NPN HBT 
(emitter/SiGe-base/N-epi) in conjunction with a distributed PNP bipolar 
(Anode/N-epi/SiGe-base). Note: alternatively the same intermittent trigger taps 
as shown in Figure 4 could be used replacing the solid G1/G2 stripes.  

Furthermore, the SCR holding voltage is relatively small 
(Vhold~1.1V) as compared to regular CMOS implementations 
reflecting the high transistor current gain of the SiGe HBT part 
of the SCR. 
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Figure 7 HBT-based DTSCR (W=2x50u; 2-sided) TLP-IV for three different 
variations of number of contact rows in anode and cathode, respectively. The 
performance boost with larger number of contact rows reflects the predominant 
vertical current flow in HBT based SCRs.  

An interesting benefit of the described SiGe HBT-SCR is the 
fact that the SCR is fully isolated from the substrate. As a 
consequence, the gate G1 can be treated the same as G2 (see 

discussion above: G1-trigger vs. G2-trigger). This allows 
simultaneous G1/G2 triggering with identical diode chains on 
both gates. Dual-gate triggering enhances the SCR speed [3] 
and thus helps to avoid transient trigger voltage over-shoots 
during the device turn-on time.  
Moreover, due to the complete device isolation from the 
substrate, DTSCRs can also be applied as local protection 
element between IO and supply. A further benefit is the device 
immunity to latch-up induced by substrate current injection. 

III. DTSCR RF-ESD APPLICATION 

III.1. Input SiGe HBT Base in BiCMOS-0.35u  
SiGe HBT (fTmax=45GHz) emitter-base protection applying the 
conventional dual-diode protection approach in conjunction 
with an NMOS-triggered SCR power clamp, see Figure 8, is 
ineffective.  Reason is the very low base-emitter failure voltage 
(~6V), which is already exceeded by the power-clamp trigger 
voltage as defined by the NMOS holding voltage (Vhold~6V). 
This situation is illustrated in the ESD design window in 
Figure 1 (top).  
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Figure 8 LNA including conventional dual-diode protection approach for 
output, input, and emitter pad. ESD protection scheme fulfills the capacitance 
specs at each pin (C(V) numbers calculated by SPICE parameters). Serious 
ESD issues occur since the NMOS-triggered power clamp has a higher Vt1 
than failure voltage of forward biased SiGe HBT base-emitter (BE) junction. 
The most critical ESD current path is indicated.  

Moreover, a direct local diode chain protection between Input 
and VEE (for both pins a capacitance spec is defined) 
compromises the RF performance because of a too high diode 
cathode capacitance (also increased by the forward bias).  
Introducing a diode chain between Input and GND violates the 
ESD design window: for worst-case stress between IN and 
VEE, 4 width-limited RF diodes (high series R!) would 
compete with the parasitic HBT BE diode in forward 
conduction.  
Local DTSCR protection as shown in Figure 9 succeeds for 
three reasons: 1. By applying three small trigger diodes in 
series, the SCR Vt1 can be reduced sufficiently below the 
critical HBT failure voltage at 6V with an acceptably low input 
leakage during normal RF operation. 2. The SCR clamps the 
IN-VEE voltage below the HBT damage, thus enabling the 
challenging 200V-MM spec (roughly corresponds to 4kV-



 

 

HBM). 3. To meet the input RF capacitance spec Cin<120fF, 
the SCR-Nwell can be pulled high to VCC through G2, thus, 
reverse biasing the SCR Anode-Nwell junction minimizing the 
parasitic capacitance of the Anode at IN.  
The TLP characteristic in Figure 10 corroborates the 
functionality of the DTSCR ESD protection revealing the 
following IV regimes: HBT BE diode conduction, DTSCR 
triggering, joined HBT/DTSCR conduction (see inset including 
ESD current path for most critical stress case), HBT failure 
after input voltage exceeds the critical HBT failure limit of 6V.  
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Figure 9 LNA including local DTSCR protection of HBT in conjunction with 
application of capacitance reduction scheme for the anode by reverse biasing 
the P+/Nwell junction. All pin combinations exceed ESD spec of 2kV-HBM 
and 200V-MM spec (latter corresponds to approx 4kV-HBM), whereas RF 
capacitance spec is also met. 
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Figure 10 LNA TLP-IV characteristic: worst-case stress (positive on Input vs. 
VEE on ground) protected by local DTSCR, cf. Figure 9: the DTSCR triggers 
and clamps the voltage below HBT base damage. The ESD spec of 2kV-HBM 
and 200V-MM can easily be achieved within the RF capacitance constraints. 

III.2. Input Ultra-Thin GOX in CMOS-0.09u   
Figure 11 depicts the TLP-IV characteristics of two DTSCRs 
in a G1- and G2-triggered configuration, respectively. Both 
structures have the thinnest NMOS gate oxide (tox=1.7nm) as a 
protection monitor in parallel to emulate an RF IC input 
configuration, see figure inset. Note that the G2-trigger scheme 

essentially results in the same leakage current as compared to 
the G1-triggered SCR. However, the G2-triggered SCR reveals 
a lower trigger voltage Vt1, since one trigger diode less can be 
used as explained above. The leakage increase at It2 indicates 
gate-oxide failure occurring within the high-resistive roll-off 
regime of the SCR IV curve. So, almost the intrinsic failure 
current of the stand alone SCR is achieved. This experiment 
proves that the SCR can successfully protect a thin input gate 
oxide. The large margin of Vt1 and clamping voltage with 
regard to BVox provides a large IC ESD design window for 
ESD protection on IC level, where additional voltage drops 
occur in the ESD discharge path e.g. across bus resistance and 
diodes. The experiment with parallel gate monitor demonstrates 
that the DTSCR structure is able to protect ultra-thin gate 
oxides. 
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Figure 11 CMOS-0.09u: TLP-IV characteristic of DTSCR including a parallel 
gate-oxide (tox=1.7nm) monitor to emulate IC input protection. The thin GOX 
can be successfully protected! 

IV. CONCLUSION 
This paper presents a novel diode-chain triggered SCR  ESD 
protection element for low voltage applications (signal, supply 
≤ 1.8V). The DTSCR enables ESD protection design of ultra-
sensitive IC nodes within extremely narrow ESD design 
windows, such as SiGe HBT emmitter-base junctions 
(advanced BiCMOS) or ultra-thin gate oxides (sub-0.25u 
CMOS). Conventional CMOS-integrated DTSCRs as well as 
SCR-based on high-speed SiGe HBT elements were 
successfully proven in product ICs.  
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